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At the present  time there is a complete lack of studies devoted to the forced motion of a drop 
located in an oscil lat ing liquid. However, this problem is of considerable in te res t .  For ex- 
ample, it r epresen t s  simulation of hydrodynamic p roces se s  occurr ing  during the i r radiat ion 
of drops of one liquid located in another liquid by longwave sound. The s ta t ionary  flows oc-  
cur r ing  in this case may have a significant influence on the heat- and m a s s - t r a n s f e r  p roces ses .  
In the presen t  ar t ic le  we investigate the velocity field in the inter ior  and ex te r ior  of a drop 
executing forced osc i l la tory  motion as a resu l t  of its interact ion with the ambient liquid. 
At a sufficiently large distance from the drop the ambient liquid osci l la tes  in a specified way, 
where s /R << 1 (s is the amplitude of displacement  of the liquid par t ic les ,  and R is the radius 
of the drop). 

The interface of the two media  executes a complex motion consist ing of its displacement  as a whole 
and of deformation,  i.e., of a departure  of its shape f rom the initial spher ical  shape. Both liquids (inside 
and outside the drop) are  assumed viscous and incompress ib le .  There  are  no gravi ty  fo rces .  The flow 
pattern is assumed to be ax i symmetr ie  with respec t  to the s traight  line passing through the center  of g ra -  
vity of the drop and oriented along the direct ion of motion of the unperturbed liquid (inthe spher ical  coor -  
dinate sys tem used below the polar  axis will coincide with the axis of symmetry) .  The motion of the liquid 
is assumed to be periodic in t ime.  

The region under considerat ion is divided into two par ts ,  the ex ter ior  (region outside the drop) and 
the inter ior  (region inside the drop). All the quantities r e f e r r i n g t o t h e i n t e r i o r  region except the indepen- 
dent var iables  are denoted by p r imes .  The coordinate origin is fixed at the center  of gravi ty of the drop. 
The initial equations for the exter ior  region are written in the form 

~-y + [w -- v0) Vlw = ----~- Vp " y a w ,  

Vw =: O, 

where w is the velocity of the liquid par t ic les  in the fixed coordinate sys tem,  p is the p re s su re ,  o is the 
density, u is the coefficient of kinematic v iscos i ty ,  and v 0 is the veloci ty of the center  of gravi ty of the 

drop (this quantity must  be determined during the solution of the problem).  

The solution for the ex ter ior  region must  be bounded; fu r the rmore ,  at an infinitely large distance 
from the drop the condition 

W ~ U  (;OS COl, 

must be satisfied, where u is the amplitude of the velocity of the unperturbed liquid and w is the angular 
frequency of the osci l la t ions.  

The initial equations for the in ter ior  region are s imi lar  in form.  The solution for this region also 
must  be bounded. 

The following conditions must  be sat isf ied at the interface of the two regions:  
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W~---W'; 

nkHi~--n~H~h ~ t + 1 

where Ilik are  the components of the s t r e s s  t ensor ;  n i are  the components of the unit vector  normal  to the 
surface  of separat ion;  oe is the coefficient of surface tension; Ri, R 2 a r e  the principal  radii  of curvature  of 

"the surface of separat ion;  k, i = 1, 2, 3; repeated indices imply summation (in the second condition, see 
[1]). 

In accordance  with the methods of the per turbat ion theory we shall seek the solution of this problem 
in the form of power se r i e s  of the smal l  p a r a m e t e r  s/R and we shall r e s t r i c t  ourselves  to the f i rs t  two 
t e rms  of the expansion, i.e., we write w, w',  p, p' in the form 

w=vl+v2;  P=PI+P~; 

w,=fi+v ; p'=p;+A 

For  the f i r s t  approximation we have 

0vl I 
0--7 = p VP~ + vAvl, 

hvl=0.  

In this approximation the boundary conditions are l inear and homogeneous with respec t  to the components 
of the veloci ty vec to r .  This follows f rom the fact that, since the p r e s s u r e  Pl is l inear in the components of 

? 
v I the components of the s t r e s s  tensor  llik are  also l inear in v t (the same holds for Ilik). It is well known 
[1] that in the f i r s t  approximation 

( 0I) t 1 2 2~ i t o sin O 
B 1 ~ - ~ - - - - -  R l i  2 B ~ s i n 0  00 

where R is the radius of the unperturbed drop, ~ is the amount of deflection of a point on the surface of 
the drop f rom its mean (unperturbed position), and 0 is the polar  angle in the spherical  coordinate sys tem.  
Since 

where Vri is the radial  component of v 1 at the surface  of the drop, the express ion for (1/R1)+(1/R2) is 
l inear  in Vri~ The homogeneity of the boundary conditions follows f rom the fact  that the p res su re  Pl oc-  
cur r ing  in the express ion for the components of the s t r e s s  tensor  is determined with an accuracy  up to an 
a r b i t r a r y  function of t ime.  

In the f i r s t  approximation the boundary conditions at the surface of the drop, whose form differs only 
slightly f rom spherical ,  can be taken to be the same as at the unperturbed sphere .  

It may be stated that the solution in this approximation does not contain stat ionary components.  Ac-  
tually, by vir tue of the l ineari ty of the equations and the boundary conditions the problems of determining 
the s tat ionary and osc i l la tory  components are  solved separate ly .  The s tat ionary component must  vanish 
at a finite distance f rom the drop (by stipulation) ; therefore  because of the homogeneity of the s tat ionary 
problem the solution for these s tat ionary components can only be zero .  

Let  us putv i = v exp(-ia.t);  Pl = P exp(-ic~t) (only the real  par t  is meaningful), where r a n d  p are 
functions of the coordinates  (the same holds for  v'l, p'l). The equations for v and p are  of the form 

--~ov+~Vp=vav, (1) 
Vv=0.  

Similar  equations are  obtained also for  v ' ,  p'~ Taking account of the s tatement  made above, the boundary 
conditions are  writ ten in the form 

v/r~,o -~ u; v/r=R = vf//--R ; (2) 
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Or r=R Or 1t2io~ sin 0 aO 

The formula t ion  of the boundary  conditions in f o r m  (2) (with the addition of the r e q u i r e m e n t  of boundedness 
of the solution in both regions)  p e r m i t s  comple te  solution of the p r o b l e m  in the f i r s t  approximat ion;  in 
pa r t i cu l a r ,  i t  is poss ib le  to de t e rmine  the ve loc i ty  of the drop as a whole mid also the change of i ts  f o rm .  

In the second approximat ion  we shall  cons ider  only the s t a t ionary  solution, s ince the osci l la t ing solu-  
tion is de t e rmined  main ly  by the f i r s t  approximat ion  [with an accu racy  up to smal l  quant i t ies  of the o rde r  
(s/R)~]. F o r t h e  s ta t ionary  flow we have the equations 

<[(h-- vo) Vlv~> t p ~7P2 + vAv~, (3) 

VV2=0~ 

where  the angular  b r a c k e t s  denote averag ing  over  the osci l la t ion per iod .  The equations for  v '  2, p~ a re  a lso  
wr i t ten  in the s a m e  way.  

Let  us fo rmula te  the boundary condit ions.  The veloci ty  v 2 m u s t v a n i s h  at an infinite dis tance f r o m  
the drop.  It  is c l ea r  f r o m  the s y m m e t r y  of the p rob l em that  the drop as a whole cannot execute  s ta t ionary  
motion.  Averaged  over  t ime the su r face  of the drop has a constant  f o r m  only sl ightly differ ing f r o m  s p h e r -  
ical ;  t he r e fo re  it can be a s s um ed  (with an accu racy  up to smal l  quanti t ies defined by the subsequent  ap-  
proximat ions)  that  ave raged  ove r  t ime  the drop is s imply  a sphere  at r e s t  in the outer  liquid; then at the 
su r face  of the drop it  is sufficient  to r equ i r e  that  the rad ia l  components  of the ve loc i ty  V2r and V'2r be ze ro  
and also the tangential  components  v20 arid vr20 f r o m  and into the drop be equal.  

The comple te  boundary  conditions a re  then wri t ten  in the fo rm 

~t \ - ~ - - - ~  -~ Or r /Ir=R -- \'7- ~ "~- Or r r=R" 

These  re la t ions  mus t  be supplemented  by the r e q u i r e m e n t  that  the solution be bounded in both r e -  
gions.  

We now turn to the solution of the p r o b l e m  in the f i r s t  approximat ion .  We shal l  show that in this 
approx imat ion  the drop will r e t a in  the spher i ca l  shape.  If it is ac tual ly  so, then the solution sat isfying 
Eqs .  (1) and boundary  conditions (2) can be wri t ten  in the f o r m  

vr=/(r ) cos 0; vo=~(r) sin 0; p=~(r)  cos 0. 

The fac tor  in the su r f ace - t ens ion  coeff icient  a in (2) vanishes  identically,  i .e. ,  the solution is independent 
of a .  That  this r e s u l t  is not in contradic t ion with the assumpt ion  of spher ic i ty  of the drop (under the con- 
dition that the solution is unique) p r o v e s  the val idi ty  of that  assumpt ion .  

Ba tche lo r  [2] has pointed out a s i m i l a r  fact  for  the case  of s t a t ionary  mot ion of the drop in a v i scous  
liquid at sma l l  Reynolds numbers  ( H a d a m a r d - R y b c h i n s k i i  p rob lem) .  In both c a s e s  this is a r e su l t  of 
neglect ing the nonl inear  t e r m s  in the p rob l em.  

The solution for  the osc i l l a to ry  components ,  which is bounded arid sa t i s f i e s  the boundary conditions 
at  infinity, is of the f o r m  

v~  la r ~ ~- - - 7  

(4) 
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v: = 2 u c o s O { c [ e x p ( , •  

v0----usinO c exp(ixr r3 r 2 

~r-~)--exp(--i• ~r-~)]--d]; 

, ' )  ( } -- --exp(--i• 1 , i• - ~ - ~  r2 �9 + 2 d  ; 
r 

p ' : - - 2 d u c o s  O~'• 

H e r e  k = (1 + i) / 5; x = (1 + i ) / 5 ' ,  5 = { - u / 2 w ;  a ,  b,  c, d a r e  u n d e t e r m i n e d  cons tan t s  which m u s t  be  
found f r o m  the b o u n d a r y  condi t ions  at the s u r f a c e  of  the drop  (2). Below we shal l  a s s u m e  that  I kR[ >> 1, 
I uRI  >> 1; then we have 

_ 3it1 e x p ( i k R )  9" ~{ 5 ~ ~t'~; 

~ (~ + 2 T ) t ~ - , ~ - y  ] 

r 

b : - -  

1+2P' ' 

p 

1 1 
d -- 3 , where e = ~ ;  (7 - - -  i ~ l {  " 

(5) 

The ve loc i t y  of  The d r o p v  0 is d e t e r m i n e d  f r o m  the f i r s t  or  four th  f o r m u l a  in (4) for  r = R and is given 
by 

3p u COS o)t, v o -- 9+29,  

which  co inc ides  with the we l l -known f o r m u l a  for  the ve loc i ty  of  a sol id  sphe re  of  dens i ty  p' loca ted  in an 
ideal  osc i l l a t ing  l iquid of dens i ty  p .  

In o r d e r  to find the s t a t i o n a r y  componen t s  of  the flow v2, v 2' we r e w r i t e  Eqs .  (3) in the f o r m  

vA rot v ~ : - -  <rot [(vi --  %) Xrot  vl]>----eT(r) sin 20, (6) 

where  e is the az imutha l  b a s e  v e c t o r  in the s p h e r i c a l  coord ina te  s y s t e m .  F o r  ~v(r) and ~v' (r) we then get  

( 2 T ~2 
U 2 . ! a i T ~ 2  ] r ~ - ~ e x p ( - - ~ l ) l - - T - - - [ c o s ~ l - - s i n ~ l - - e x p ( - - ~ l ) ]  + 3b~l r , = "~-y" [ai (cos ~l --  sin ~l)-- a2 (cos ~l + sin ~l)]/; 

�9 ~ u 2  t l 

~- c2)[exp (~') sin - - cos  ~l']. 

He re  ~ = ( r - R ) / 5 ,  ~?' = ( r - R ) / 6 ' ;  the r e a l  cons tan t s  a l ,  a2, 01% c 2 a r e  r e l a t ed  to cons tan t s  a ,  e in 
(5) in the  fo l lowing m a n n e r :  

ai q- ia2=a exp ( ikR);  c i~- ic2=c exp ( - - i •  

In t roduc ing  the s t r e a m  funct ion C [V2r = (1/ r2s in0)(0C/00) ,  v20 = (1 / r  sin0)(0 C/0r)] and e x p r e s s i n g  it in the 
f o r m  

~=r sin 20 sin O, 

we r e w r i t e  Eq.  (6) in the f o r m  

%~'"r t2~r ~" + 24m'r' --~(r)v (7) 
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T h e  b o u n d a r y  c o n d i t i o n s  a t  the  s u r f a c e  of the  d r o p  b e c o m e  

r  = O'l~=a = 0; 

T h e  s o l u t i o n  fo r  �9 and  ~ '  tha t  i s  bounde d  and s a t i s f i e s  the  b o u n d a r y  cond i t i on  a t  in f in i ty  (v~ ~ D ) i s  
w r i t t e n  in the  f o r m  

q)= A /r~ + B @ q3o; 

~ ' = C r~ -~ D rZ @ Op' o , 

w h e r e  ge ~ and q,' 0 a r e  p a r t i c u l a r  s o l u t i o n s  of (7) g i v e n  b y  the  f o r m u l a s  

(i)o == R T !!ii (r)dr; 
B | IIff 

(9) 

Obvious ly ,  the  p a r t i c u l a r  s o l u t i o n s  thus  o b t a i n e d  s a t i s f y  (under  the  cond i t i on  [ kR] >> 1, [ ~tR I >> 1) E q s .  
(7); A,  B,  C, D a r e  u n d e t e r m i n e d  c o n s t a n t s  t ha t  a r e  found f r o m  b o u n d a r y  c ond i t i ons  (8). A f t e r  s o m e  c o m -  
p u t a t i o n s  we ge t  

f~o u~21 a2 ' 2[- t ] = v - ' ~ [ - -  ~" [ W e x p ( - - 2 n ) - ~ e x p ( - - n ) ( c ~  -~ 

N-~ [ ~  exp ( - -  ~1) ~1 cos ~1 , ~ ~-~, ( - -  "q) ~1 sin ~1 + al  exp ( - -  ~1) sin ~1 -I- a2 exp ( - -  ~1) cos ~l ; 

[-g- exp (2~1') + exp (~l') (cos ~l' sin 
[ 

- R* ( ~ -  5 & ~-~-~ ~ 

~ ~- 5 B--- Y r B'~ ~ 5zh 
C D - -  

w h e r e  

A =  

a l = ~ " ~  5 v,6, 2 ~ ~a l@a - - 9 - ~ - v ( a l - - a ~ )  ; 

"=- - 2 a ~ =" 

In p a r t i c u l a r ,  i f  ~ ' / #  ~ ~o, D ' /o  ~ ~ ( so l i d  s p h e r e  a t  r e s t  in an o s c i l l a t i n g  l iqu id) ,  then a c c o r d i n g  to (5) 
we have  

Bs 36'3R 
3 R6; b =  = 0 ;  c , , - - -46s  a l = a  2 ~  _ _ ~  -~-; c 1 . - -  , 

(s) 

T h e n  

45 u ~-6 ~.B 3 B = 45u282B" 
A - -  8 - i 6  v ' 8 - 1 6 v  ' C ~ -  0 ;  D = 0 .  

I n s i d e  the  d r o p  t h e r e  i s  no f low.  L e t  us  d e t e r m i n e  the  t ange r t t i a l  c o m p o n e n t  of the  v e l o c i t y  v20 a t  the  l i m i t  
of  the  " b o u n d a r y  l a y e r "  (~/>> 1) in the  o u t e r  l i qu id .  Wi th  t he  u s e  of (9) we g e t  

1 2A 45 u" 
v~o (5) = ---ff ~Pr sin 20 = - -  ~ sin 20 --  32 K(o sin 20, 
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which coincides ,with the r e s u l t  obtained in [3]. If # ' / ~ - -  0, p ' / p  - -  0 (model of a bubble in the liquid), then 
we have 

al=O; a2=362; cl----0; c2----3/2//62; b ~ - - R  s 

and 

45u26,~ 45u26,~ 
C =  32v,B4, D - ~  -~v,R~ . 

In o rde r  of magnitude the constants  A and B a re  equal to 

u~63R~ u~6S 
A N ~ ;  B ~ ' - - .  'V 'Y 

For ~7' << -- 1 the tangential component of the velocity inside the drop is equal to 

,~o(8') = 45 ~ 8 R--co sin 20. 

Outside the drop the ve loc i ty  v20(6 ) has  the following o rde r  of magnitude:  

V20 x-J  R~o 1~ ' 

h e n c e  
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